Some Model Theory of Modules over Bézout Domains

Carlo Toffalori (Camerino)

ASTA, Spineto, June 16-20, 2014

A joint work with Gena Puninski (Minsk) ...
... and our common tribute to Alberto

A commutative domain B with identity is Bézout if every 2-generated ideal (hence every finitely generated ideal) is principal.

A Bézout domain is coherent: the intersection of 2 principal ideals is also principal.

Then can define, for every $a, b \in B$,

- a greatest common divisor $\operatorname{gcd}(a, b)$,
- a least common multiple $\operatorname{lcm}(a, b)$
satisfying the Bézout identities.
Bézout domains are Prüfer: their localizations at maximal ideals are commutative valuation domains.

Bézout domains include

- the ring of algebraic integers,
- the ring of entire (complex or real) functions in 1 variable,
- $\mathbb{Z}+X \mathbb{Q}[X]$,
- more generally the rings coming from the so-called $D+M$-construction:
- take a PID D which is not a field,
- consider its field of fractions Q,
- form $B=D+X Q[X]$
- and get a Bézout domain, which is neither Noetherian nor a UFD (because for every prime $p \in D$

$$
X B \subset p^{-1} X B \subset p^{-2} X B \subset \ldots
$$

is a strictly ascending chain of ideals).

Our interest. The model theory of (right) modules over a Bézout domain B.
To explore

- pp-formulas and pp-types over B
- the Ziegler spectrum $\mathrm{Zg}(B)$ (where
- points $=$ (isomorphism types of) indecomposable pure injective B-modules,
- basic open sets $=(\varphi(x) / \psi(x)):=$ $\{N \in Z g(B): \varphi(N) \supset \psi(N) \cap \varphi(N)\}$ where $\varphi(x), \psi(x)$ range over pp-formulas).

Some possible aims

- Try to classify indecomposable pure injective B-modules, or
- show existence of pathologies like superdecomposable pure injective B-modules.

Useful to consider $\Gamma^{+}(B)=$ lattice of principal ideals of B with respect to divisibility of generators (so with respect to reverse inclusion).

Theorem
Every pp-formula in 1 variable over B is logically equivalent to

1. a finite conjunction of formulas $\varphi_{a, b}(x): a \mid x+x b=0$ with $a, b \in B$, or also to
2. a finite sum of formulas $\psi_{a, b}(x): a \mid x \wedge x b=0$ with $a, b \in B$.

Note: An effective reduction can be obtained over an effectively given B.

Now have to understand logical equivalence, hence logical implication, between formulas $\varphi_{a, b}$. Here is an algebraic characterization.

Theorem
For $a, b, c, d \in B$ and $a, d \neq 0, \varphi_{a, b} \rightarrow \varphi_{c, d}$ if and only if $c \mid a$ and $c, \operatorname{lcm}(b, d) / c$ are coprime.

Theorem
A basis of open sets of $\operatorname{Zg}(B)$ is given by $\left(\psi_{c, d} / \varphi_{a, b}\right)$ where a, b, c, d range over B.

Note: The sets in this basis an be effectively enumerated over an effectively given B.

How to characterize (indecomposable) pp-types (and points in the spectrum).

Theorem
There is a natural 1-1 correspondence between

- indecomposable pp-types q (in 1 variable) over B,
- admissible pairs (I, J) of filter/cofilter partitions of $\Gamma^{+}(B)$ sending q to
- $I=\left\{b B \in \Gamma^{+}(B): x b=0 \in q\right\}$ (a filter), $I^{\prime}=\Gamma^{+}(B) \backslash I$,
- $J=\left\{a B \in \Gamma^{+}(B): a \mid x \notin q\right\}$ (a cofilter), $J^{\prime}=\Gamma^{+}(B) \backslash J$.

Admissibility: if $a B \in J^{\prime}, c B \in J, b B \in I, d B \in I^{\prime}$, a properly divides c and d properly divides b, then c / a and b / d are coprime.

Theorem

There is a natural 1-1 correspondence between

- pp-types q (in 1 variable) over B,
- functions F from $\Gamma^{+}(B)$ to the set of cofilters of $\Gamma^{+}(B)$-a lattice with respect to inclusion, and indeed the completion of $\Gamma^{+}(B)$ - satisfying the conditions 1-5 below. For every $a, b \in B$, one puts $\varphi_{a, b} \in q$ if and only if $a B \in F(b B)$.
The five conditions:

1. $F(0 B)=\Gamma^{+}(B)$
2. $F(B)=\Gamma^{+}(B)$ if and only if $q=0$
3. For every $a, b, b^{\prime} \in B$, if $a B \in F(b B)$, then $a b^{\prime} B \in F\left(b b^{\prime} B\right)$, in particular F is non-decreasing
4. For every $a, b, b^{\prime} \in B$, if $a B \in F\left(b b^{\prime} B\right)$ and a, b^{\prime} are coprime, then $a B \in F(b B)$
5. F preserves meet, that is, for every $b, b^{\prime} \in B$, $F\left(\operatorname{gcd}\left(b, b^{\prime}\right) B\right)=F(b B) \cap F\left(b^{\prime} B\right)$.

On this basis..
superdecomposable modules sometimes occur over B.
Recall that a non-zero (pure injective) B-module M is superdecomposable if and only if it does not admit no non-zero indecomposable summand.

Width and superdecomposables (Ziegler). Let R be any ring.

- If there is a superdecomposable pure injective R-module, then the lattice of pp-formulas over R has no width.
- The converse is also true when the lattice is countable (open in general).

Coming back to Bézout domains
Theorem
If B has a non-zero proper idempotent ideal, then B possesses a superdecomposable pure injective module.

It applies to

- the ring of algebraic integers,
- the ring of entire (real or complex) functions in 1 variable.

Theorem
The width of B is undefined if and only if the value group of B contains a densely ordered subchain.

A detailed analysis of this case generalizes that over commutative valuation domains (actually rings) using the characterization of pp-types via $\Gamma^{+}(B)$ and the associated functions F.

The $D+M$-construction case, $B=D+X Q[X]$

Lemma

A nonzero prime ideal of B is either

1. $p B$, where p is a prime element of D, or
2. for some irreducible polynomial $f(X) \in Q[X]$ whose constant term is 1 , the ideal $P_{f}=f(X) B$, or
3. $P_{X}=X Q[X]$.

These prime ideals satisfy the following inclusion diagram:

In particular, P_{X} is not maximal and $P_{X}=\cap_{p} p B$.

Theorem

The Krull-Gabriel dimension of B equals 4 with $Q(X)$ being a unique point of maximal CB-rank. Moreover the Ziegler spectrum $\mathrm{Zg}(B)$ of B is the union of the closed subspaces

- $\mathrm{Zg}\left(B_{f(X)}\right)$ where $f(X)$ ranges over the irreducible polynomials of $Q[X]$ with constant term 1,
- $\mathrm{Zg}\left(B_{p}\right)$ where p ranges over the prime elements of D.

The latter subspaces include $\mathrm{Zg}\left(B_{X}\right)$, which is their intersection. The intersection of two different $\mathrm{Zg}\left(B_{f(X)}\right)$, or of a $\mathrm{Zg}\left(B_{f(X)}\right)$ and a $\mathrm{Zg}\left(B_{p}\right)$, reduces to the only point $Q(X)$.

The picture - a sort of bouquet ...
Here $\mathrm{Zg}_{f}, \mathrm{Zg}_{p}$ and $\mathrm{Zg} x$ abbreviate $\mathrm{Zg}\left(B_{f}\right), \mathrm{Zg}\left(B_{p}\right), \mathrm{Zg}\left(B_{X}\right)$ respectively.

U_{f}, U_{p} are the open sets where f, p respectively act as non-isomorphisms.

Decidability

A countable integral domain D is said to be effectively given if its elements can be recursively listed (possibly with repetitions) as

$$
r_{0}=0, r_{1}=1, r_{2}, \ldots, r_{k}, \ldots \quad k \in \mathbb{N}
$$

so that the following holds:

- there are algorithms which, given $n, m \in \mathbb{N}$, produce $r_{n}+r_{m}$, $-r_{n}$ and $r_{n} \cdot r_{m}$ (more precisely indices for these elements in the list);
- there is an algorithm which, given $n, m \in \mathbb{N}$, decides whether $r_{n}=r_{m}$ or not;
- there is an algorithm which, given $n, m \in \mathbb{N}$, establishes whether $r_{m} \mid r_{n}$ or not.

We say that a(n effectively given) principal ideal domain D is strongly effectively given if it satisfies the following extra conditions:

- there is an algorithm that lists all the prime elements of D;
- there is an algorithm that lists all the irreducible polynomials of $Q[X]$;
- for every prime p the size of the field $D / p D$ is known.

For instance \mathbb{Z} is strongly effectively given (Kronecker).

Theorem

Let D be a strongly effectively given principal ideal domain and let $B=D+X Q[X]$ be the corresponding Bézout domain. Then the theory $T(B)$ of B-modules is decidable.
The proof uses the previous analysis and Lorna Gregory's work on decidability of modules over valuation domains.

- G. Puninski - C. T., Some model theory of modules over Bézout domains. The width, J. Pure Applied Algebra, to appear
- G. Puninski - C. T., Decidability of modules over a Bézout domain $D+X Q[X]$ with D a principal ideal domain and Q its field of fractions, J. Symbolic Logic, to appear

