Some Model Theory of Modules over Bézout Domains

Carlo Toffalori (Camerino)

ASTA, Spineto, June 16-20, 2014

A joint work with Gena Puninski (Minsk) and our common tribute to Alberto

A commutative domain *B* with identity is *Bézout* if every 2-generated ideal (hence every finitely generated ideal) is principal.

A Bézout domain is *coherent*: the intersection of 2 principal ideals is also principal.

Then can define, for every $a, b \in B$,

- a greatest common divisor gcd(a, b),
- a least common multiple lcm(a, b)

satisfying the Bézout identities.

Bézout domains are Prüfer: their localizations at maximal ideals are commutative valuation domains.

Bézout domains include

- the ring of algebraic integers,
- the ring of entire (complex or real) functions in 1 variable,
- $\blacktriangleright \mathbb{Z} + X \mathbb{Q}[X],$
- more generally the rings coming from the so-called D + M-construction:
 - take a PID D which is not a field,
 - consider its field of fractions Q,
 - form B = D + XQ[X]
 - ► and get a Bézout domain, which is neither Noetherian nor a UFD (because for every prime p ∈ D

$$XB \subset p^{-1}XB \subset p^{-2}XB \subset \dots$$

is a strictly ascending chain of ideals).

Our interest. The model theory of (right) modules over a Bézout domain *B*.

To explore

- pp-formulas and pp-types over B
- the Ziegler spectrum Zg(B) (where
 - points = (isomorphism types of) indecomposable pure injective B-modules,
 - ▶ basic open sets = $(\varphi(x)/\psi(x)) :=$ { $N \in Zg(B) : \varphi(N) \supset \psi(N) \cap \varphi(N)$ } where $\varphi(x)$, $\psi(x)$ range over pp-formulas).

Some possible aims

- ▶ Try to classify indecomposable pure injective *B*-modules, or
- show existence of pathologies like superdecomposable pure injective *B*-modules.

Useful to consider $\Gamma^+(B) =$ lattice of principal ideals of B with respect to divisibility of generators (so with respect to reverse inclusion).

Theorem

Every pp-formula in 1 variable over B is logically equivalent to

- 1. a finite conjunction of formulas $\varphi_{a,b}(x)$: $a \mid x + xb = 0$ with $a, b \in B$, or also to
- 2. a finite sum of formulas $\psi_{a,b}(x)$: $a \mid x \land xb = 0$ with $a, b \in B$.

Note: An effective reduction can be obtained over an effectively given *B*.

Now have to understand logical equivalence, hence logical implication, between formulas $\varphi_{a,b}$. Here is an algebraic characterization.

Theorem

For $a, b, c, d \in B$ and $a, d \neq 0$, $\varphi_{a,b} \rightarrow \varphi_{c,d}$ if and only if $c \mid a$ and $c, \operatorname{lcm}(b, d)/c$ are coprime.

Theorem

A basis of open sets of Zg(B) is given by $(\psi_{c,d}/\varphi_{a,b})$ where a, b, c, d range over B.

Note: The sets in this basis an be effectively enumerated over an effectively given *B*.

How to characterize (indecomposable) pp-types (and points in the spectrum).

Theorem

There is a natural 1-1 correspondence between

- indecomposable pp-types q (in 1 variable) over B,
- admissible pairs (I, J) of filter/cofilter partitions of $\Gamma^+(B)$ sending q to
 - $I = \{bB \in \Gamma^+(B) : xb = 0 \in q\}$ (a filter), $I' = \Gamma^+(B) \setminus I$,
 - ► $J = \{aB \in \Gamma^+(B) : a \mid x \notin q\}$ (a cofilter), $J' = \Gamma^+(B) \setminus J$.

Admissibility: if $aB \in J'$, $cB \in J$, $bB \in I$, $dB \in I'$, a properly divides c and d properly divides b, then c/a and b/d are coprime.

There is a natural 1-1 correspondence between

pp-types q (in 1 variable) over B,

functions F from Γ⁺(B) to the set of cofilters of Γ⁺(B) – a lattice with respect to inclusion, and indeed the completion of Γ⁺(B) – satisfying the conditions 1–5 below. For every a, b ∈ B, one puts φ_{a,b} ∈ q if and only if aB ∈ F(bB).

The five conditions:

- 1. $F(0B) = \Gamma^+(B)$
- 2. $F(B) = \Gamma^+(B)$ if and only if q = 0
- 3. For every $a, b, b' \in B$, if $aB \in F(bB)$, then $ab'B \in F(bb'B)$, in particular F is non-decreasing
- 4. For every $a, b, b' \in B$, if $aB \in F(bb'B)$ and a, b' are coprime, then $aB \in F(bB)$
- 5. F preserves meet, that is, for every $b, b' \in B$, $F(gcd(b, b')B) = F(bB) \cap F(b'B).$

On this basis...

superdecomposable modules sometimes occur over *B*.

Recall that a non-zero (pure injective) *B*-module *M* is *superdecomposable* if and only if it does not admit no non-zero indecomposable summand.

Width and superdecomposables (Ziegler). Let R be any ring.

- ▶ If there is a superdecomposable pure injective *R*-module, then the lattice of pp-formulas over *R* has no width.
- The converse is also true when the lattice is countable (open in general).

Coming back to Bézout domains

Theorem

If B has a non-zero proper idempotent ideal, then B possesses a superdecomposable pure injective module.

It applies to

- the ring of algebraic integers,
- the ring of entire (real or complex) functions in 1 variable.

The width of B is undefined if and only if the value group of B contains a densely ordered subchain.

A detailed analysis of this case generalizes that over commutative valuation domains (actually rings) using the characterization of pp-types via $\Gamma^+(B)$ and the associated functions F.

The D + M-construction case, B = D + XQ[X]

Lemma

A nonzero prime ideal of B is either

- 1. pB, where p is a prime element of D, or
- 2. for some irreducible polynomial $f(X) \in Q[X]$ whose constant term is 1, the ideal $P_f = f(X)B$, or
- $3. P_X = XQ[X].$

These prime ideals satisfy the following inclusion diagram:

In particular, P_X is not maximal and $P_X = \bigcap_p pB$.

The Krull–Gabriel dimension of B equals 4 with Q(X) being a unique point of maximal CB-rank. Moreover the Ziegler spectrum Zg(B) of B is the union of the closed subspaces

 Zg(B_{f(X)}) where f(X) ranges over the irreducible polynomials of Q[X] with constant term 1,

▶ $Zg(B_p)$ where p ranges over the prime elements of D.

The latter subspaces include $Zg(B_X)$, which is their intersection. The intersection of two different $Zg(B_{f(X)})$, or of a $Zg(B_{f(X)})$ and a $Zg(B_p)$, reduces to the only point Q(X).

The picture – a sort of bouquet ... Here Zg_f , Zg_p and Zg_X abbreviate $Zg(B_f)$, $Zg(B_p)$, $Zg(B_X)$ respectively.

 U_f , U_p are the open sets where f, p respectively act as non-isomorphisms.

Decidability

A countable integral domain D is said to be effectively given if its elements can be recursively listed (possibly with repetitions) as

$$r_0 = 0, r_1 = 1, r_2, \ldots, r_k, \ldots$$
 $k \in \mathbb{N}$

so that the following holds:

- there are algorithms which, given n, m ∈ N, produce r_n + r_m, -r_n and r_n · r_m (more precisely indices for these elements in the list);
- ▶ there is an algorithm which, given $n, m \in \mathbb{N}$, decides whether $r_n = r_m$ or not;

▶ there is an algorithm which, given $n, m \in \mathbb{N}$, establishes whether $r_m \mid r_n$ or not.

We say that a(n effectively given) principal ideal domain D is *strongly effectively given* if it satisfies the following extra conditions:

- ▶ there is an algorithm that lists all the prime elements of *D*;
- there is an algorithm that lists all the irreducible polynomials of Q[X];

• for every prime p the size of the field D/pD is known.

For instance \mathbb{Z} is strongly effectively given (Kronecker).

Let D be a strongly effectively given principal ideal domain and let B = D + XQ[X] be the corresponding Bézout domain. Then the theory T(B) of B-modules is decidable.

The proof uses the previous analysis and Lorna Gregory's work on decidability of modules over valuation domains.

- G. Puninski C. T., Some model theory of modules over Bézout domains. The width, *J. Pure Applied Algebra*, to appear
- G. Puninski C. T., Decidability of modules over a Bézout domain D + XQ[X] with D a principal ideal domain and Q its field of fractions, J. Symbolic Logic, to appear